views
E
{\displaystyle \mathbf {E} }
and magnetic field
B
{\displaystyle \mathbf {B} }
interact, also predict the speed of light, for light is an electromagnetic wave. Thus, the end goal here is to obtain a wave equation.
Begin with Maxwell's Equations in vacuum. In vacuum, charge density ρ = 0 {\displaystyle \rho =0} \rho =0 and current density J = 0. {\displaystyle \mathbf {J} =0.} {\mathbf {J}}=0. ∇ ⋅ E = 0 ∇ ⋅ B = 0 ∇ × E = − ∂ B ∂ t ∇ × B = μ 0 ϵ 0 ∂ E ∂ t {\displaystyle {\begin{aligned}\nabla \cdot \mathbf {E} &=0\\\nabla \cdot \mathbf {B} &=0\\\nabla \times \mathbf {E} &=-{\frac {\partial \mathbf {B} }{\partial t}}\\\nabla \times \mathbf {B} &=\mu _{0}\epsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}\end{aligned}}} {\begin{aligned}\nabla \cdot {\mathbf {E}}&=0\\\nabla \cdot {\mathbf {B}}&=0\\\nabla \times {\mathbf {E}}&=-{\frac {\partial {\mathbf {B}}}{\partial t}}\\\nabla \times {\mathbf {B}}&=\mu _{0}\epsilon _{0}{\frac {\partial {\mathbf {E}}}{\partial t}}\end{aligned}} where μ 0 {\displaystyle \mu _{0}} \mu _{0} is the magnetic permeability constant and ϵ 0 {\displaystyle \epsilon _{0}} \epsilon _{0} is the electric permittivity constant. The intertwining between the electric and magnetic fields is on full display here.
Take the curl of both sides of Faraday's Law. ∇ × ( ∇ × E ) = ∇ × − ∂ B ∂ t = − ∂ ∂ t ( ∇ × B ) {\displaystyle {\begin{aligned}\nabla \times (\nabla \times \mathbf {E} )&=\nabla \times -{\frac {\partial \mathbf {B} }{\partial t}}\\&=-{\frac {\partial }{\partial t}}(\nabla \times \mathbf {B} )\end{aligned}}} {\begin{aligned}\nabla \times (\nabla \times {\mathbf {E}})&=\nabla \times -{\frac {\partial {\mathbf {B}}}{\partial t}}\\&=-{\frac {\partial }{\partial t}}(\nabla \times {\mathbf {B}})\end{aligned}} Note that partial derivatives commute with each other, given well-behaved functions.
Substitute the Ampere-Maxwell Law. Using the BAC-CAB identity ∇ × ( ∇ × E ) = ∇ ( ∇ ⋅ E ) − ∇ 2 E {\displaystyle \nabla \times (\nabla \times \mathbf {E} )=\nabla (\nabla \cdot \mathbf {E} )-\nabla ^{2}\mathbf {E} } \nabla \times (\nabla \times {\mathbf {E}})=\nabla (\nabla \cdot {\mathbf {E}})-\nabla ^{{2}}{\mathbf {E}} on the left side and recognizing that ∇ ⋅ E = 0 , {\displaystyle \nabla \cdot \mathbf {E} =0,} \nabla \cdot {\mathbf {E}}=0, ∇ ( ∇ ⋅ E ) − ∇ 2 E = − μ 0 ϵ 0 ∂ 2 E ∂ t 2 ∇ 2 E = μ 0 ϵ 0 ∂ 2 E ∂ t 2 . {\displaystyle {\begin{aligned}\nabla (\nabla \cdot \mathbf {E} )-\nabla ^{2}\mathbf {E} &=-\mu _{0}\epsilon _{0}{\frac {\partial ^{2}\mathbf {E} }{\partial t^{2}}}\\\nabla ^{2}\mathbf {E} &=\mu _{0}\epsilon _{0}{\frac {\partial ^{2}\mathbf {E} }{\partial t^{2}}}.\end{aligned}}} {\begin{aligned}\nabla (\nabla \cdot {\mathbf {E}})-\nabla ^{{2}}{\mathbf {E}}&=-\mu _{0}\epsilon _{0}{\frac {\partial ^{{2}}{\mathbf {E}}}{\partial t^{{2}}}}\\\nabla ^{{2}}{\mathbf {E}}&=\mu _{0}\epsilon _{0}{\frac {\partial ^{{2}}{\mathbf {E}}}{\partial t^{{2}}}}.\end{aligned}} The above equation is the wave equation in three dimensions.
Rewrite the wave equation in one dimension. ∂ 2 E ∂ x 2 = μ 0 ϵ 0 ∂ 2 E ∂ t 2 . {\displaystyle {\frac {\partial ^{2}E}{\partial x^{2}}}=\mu _{0}\epsilon _{0}{\frac {\partial ^{2}E}{\partial t^{2}}}.} {\frac {\partial ^{{2}}E}{\partial x^{{2}}}}=\mu _{0}\epsilon _{0}{\frac {\partial ^{{2}}E}{\partial t^{{2}}}}. The general solution to this equation is f ( x − v t ) + g ( x + v t ) , {\displaystyle f(x-vt)+g(x+vt),} f(x-vt)+g(x+vt), where v {\displaystyle v} v is the velocity and λ {\displaystyle \lambda } \lambda is the wavelength. Here, f {\displaystyle f} f and g {\displaystyle g} g are two arbitrary functions that describe a wave propagating in the positive and negative directions, respectively. Since this is quite general, we can opt for the most common solution of just a sinusoidal function traveling in the direction of propagation. So we can write the solution as E = E 0 sin ( 2 π λ ( x − v t ) ) , {\displaystyle E=E_{0}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right),} E=E_{0}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right), where E 0 {\displaystyle E_{0}} E_{0} is the amplitude of the electric field (this quantity will cancel out later).
Twice differentiate the solution with respect to x {\displaystyle x} x and t {\displaystyle t} t. ∂ 2 E ∂ x 2 = − E 0 ( 2 π λ ) 2 sin ( 2 π λ ( x − v t ) ) ∂ 2 E ∂ t 2 = − E 0 ( 2 π v λ ) 2 sin ( 2 π λ ( x − v t ) ) {\displaystyle {\begin{aligned}{\frac {\partial ^{2}E}{\partial x^{2}}}&=-E_{0}\left({\frac {2\pi }{\lambda }}\right)^{2}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right)\\{\frac {\partial ^{2}E}{\partial t^{2}}}&=-E_{0}\left({\frac {2\pi v}{\lambda }}\right)^{2}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right)\end{aligned}}} {\begin{aligned}{\frac {\partial ^{{2}}E}{\partial x^{{2}}}}&=-E_{0}\left({\frac {2\pi }{\lambda }}\right)^{{2}}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right)\\{\frac {\partial ^{{2}}E}{\partial t^{{2}}}}&=-E_{0}\left({\frac {2\pi v}{\lambda }}\right)^{{2}}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right)\end{aligned}}
Substitute these equations back into the wave equation. Note that the sin {\displaystyle \sin } \sin expressions cancel out. − E 0 ( 2 π λ ) 2 = μ 0 ϵ 0 [ − E 0 ( 2 π v λ ) 2 ] 1 = μ 0 ϵ 0 v 2 {\displaystyle {\begin{aligned}-E_{0}\left({\frac {2\pi }{\lambda }}\right)^{2}&=\mu _{0}\epsilon _{0}\left[-E_{0}\left({\frac {2\pi v}{\lambda }}\right)^{2}\right]\\1&=\mu _{0}\epsilon _{0}v^{2}\end{aligned}}} {\begin{aligned}-E_{0}\left({\frac {2\pi }{\lambda }}\right)^{{2}}&=\mu _{0}\epsilon _{0}\left[-E_{0}\left({\frac {2\pi v}{\lambda }}\right)^{{2}}\right]\\1&=\mu _{0}\epsilon _{0}v^{{2}}\end{aligned}}
Arrive at the answer. v = 1 μ 0 ϵ 0 ≈ 3 × 10 8 m s − 1 . {\displaystyle v={\sqrt {\frac {1}{\mu _{0}\epsilon _{0}}}}\approx 3\times 10^{8}{\text{ m s}}^{-1}.} v={\sqrt {{\frac {1}{\mu _{0}\epsilon _{0}}}}}\approx 3\times 10^{{8}}{\text{ m s}}^{{-1}}. The expression on the right happens to equal the speed of light. In fact, light does not only travel at the speed of electromagnetic waves, it is an electromagnetic wave.
Comments
0 comment